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ABSTRACT

In part I of this paper, the question of the extent of dominance of the mode-I

asymptotic elastodynamic crack-tip field (the Kd-field) was studied experimentally.

Here, the results of two- and three-dimensional elastodynamic finite-element simu-

lations of the drop-weight experiments are reported. The load records as obtained

from the impact-hammer and supports of the drop-weight loading device were used

as boundary tractions in the numerical simulations. For the laboratory specimen

studied, the results of the simulations indicate that the asymptotic elastodynamic

field is not an adequate description of the actual fields prevailing over any sizeable

region around the crack-tip. This confirms the experimental results of part I which

showed that three-dimensional and transient effects necessarily have to be taken

into account for valid interpretation of experimental results.
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1 INTRODUCTION

It is increasingly being recognized that the stress and displacement fields near

the tip of a crack are essentially three dimensional in nature. Exact analytical

solutions for the three-dimensional crack problem, however, do not exist in general.

Thus, finite-elements have been used extensively to gain an understanding of the

three dimensional structure of the crack-tip fields. For example, Levy, Marcal and

Rice (1971), Parsons, Hall and Rosakis (1986), and Nakamura and Parks (1987)

have investigated three-dimensional crack problems under elastostatic conditions.

In addition, Narasimhan and Rosakis (1988a) and Nakamura and Parks (1988) have

recently studied the three dimensional elastoplastic state prevailing near the tip of

a static crack.

The finite-element method has also been used to study three dimensional dy-

namic fracture problems. For the most part, however, special singular elements

have been used to model the crack-tip. The purpose of employing singular elements

has been to bias the near tip field to have a particular (asymptotically known)

structure in order to extract the magnitude of crack-tip singularities (the stress-

intensity factor, J-integral, et cetera). For instance, Nakamura, Shih and Freund

(1986) have recently analyzed the threepoint bend configuration under idealized

dynamic loading conditions. Their primary objective was to identify conditions

under which experimentally obtained quantities could be used to directly infer the

initiation value of the J-integral under elastoplastic conditions.

Smith and Freund (1988) were the first to investigate in detail the nature of the

near-tip three-dimensional elastic fields for a steady-state, dynamically propagating

crack under Mode-I conditions. They, however, imposed the plane-stress dynamic

stress-intensity factor field (the Kd-field) as the far field boundary condition. As

pointed out in part I of this paper, one of the most important pieces of information

that the experimentalist would like to have is the extent to which the K d-field

models the near-tip stresses and displacements. Most of the experimental results

reported in the literature rely on the assumption of Kd-dominance around the

crack-tip. The adequacy of such an assumption therefore needs to be studied.

In part I, the issue of Kd-dominance was studied through a series of drop-
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weight experiments in conjunction with the method of bifocal caustics. The results

of the experiments indicated that the assumption of Kd-dominance could lead to

substantial errors in the measured results. In this paper, the finite-element method

is used to investigate this issue further. No attempt is made to bias the near-tip

singularity; nor is the far-field boundary condition constrained to be given by the

plane-stress asymptotic field.

A series of two- and three-dimensional finite-element simulations* of the drop-

weight experiments (reported in part I) are done using the experimentally recorded

impact- and support-point load histories as boundary tractions for the simulations.

The simulations are undertaken in an effort to qualitatively capture the essential

features of the experimental results. Only the case of the dynamically loaded sta-

tionary crack is considered for the simulations. It is felt that attempting to simulate

the case of a propagating crack would be premature at this point, especially since

it entails a high degree of uncertainty in terms of the nodal-release procedure that

would have to be used. The primary interest here is in trying to identify the role

of specimen geometry, dynamic loading, and the three-dimensional structure of the

crack-tip region (especially under transient conditions) insofar as these have a bear-

ing on the Kd-dominance assumption on which the experimental methods rest.

Three issues are addressed. First, where relevant, direct comparisons of the

numerical results with the corresponding asymptotic field are made to ascertain the

adequacy of the Kd-field as a characterizer of the near-tip continuum fields. All field

quantities presented are normalized in such a manner as to highlight salient points.

Thus, full-field two-dimensional results are compared with the asymptotic field and

three-dimensional results are normalized by the appropriate two-dimensional or

asymptotic values. Secondly, virtual energy-release rate integrals are evaluated

numerically to extract stress-intensity factor values in order to compare with the

experimentally measured values. Finally, the implications of t~c finite-element re-

sults are studied with regard to the experimental method of caustics in reflection.

* All the numerical computations were done using a much-modified version of

the finite-element analysis program FEAP whose ancestry traces back to Taylor

(1977).



-5-

In an attempt to qualitatively recover the results of the drop-weight experiments,

an exact analog of the procedure used in the experiments is attempted in the fol-

lowing manner. As explained in part I, the out-of-plane surface displacement fields

obtained from the analyses are used to numerically generate (synthetic) caustic

patterns for a range of initial-curves. That is, the numerically obtained surface

out-of-plane displacement field u 3(XI, X2 , h/2) is subjected to the optical mapping

X = z + 2zo.us(x1,x 2 , h/2) (1)

for a set of values for parameter z0 (the object plane distance). Here, x are points

on the specimen that are optically mapped onto points X on the object plane,

and h is the specimen thickness. These caustics are then interpreted exactly as

in the experiments; i.e., the caustic diameters are related to the stress-intensity

factor under the assumption that the underlying out-of-plane displacement field is

Kd-dominant. Thus, the transverse diameters of the synthetic caustics are used to

extract the apparent stress-intensity factor values through the relation

d ED5 /2

zoK fh(a,V),

where D is the transverse diameter of the caustic, v is Poisson's ratio and E is the

Young's modulus of the material, h is the specimen thickness, a is the crack velocity

and f is a known function of crack velocity and material properties (see part I for

details). Again, as in the experiments, if the displacement field is not actually K!-

dominant, this fact would be reflected as an apparent (erroneous) dependence of

the stress-intensity factor on the radial distance from the crack-front.

It must be pointed out that in the ensuing discussion of two-dimensional results,

all in-plane lengths are normalized by the (actual) specimen thickness, h. For a two-

dimensional problem, however, the plate thickness is not a relevant length scale.

This is done here purely for ease of reference with subsequent three-dimensional

results.

2 TWO-DIMENSIONAL ELASTODYNAMIC SIMULATIONS

The simulations of the dynamic experiments were first attempted under the

simplifying assumption that the specimens could be considered to be essentially un-

der plane-stress conditions. Before delving into the simulations of the experiments.
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one issue needs to be addressed. Since no special singular elements were used in the

finite-element analyses, it is essential that the discretization used must be such as

to capture the expected singular crack-tip fields adequately. To this effect, prelim-

inary two-dimensional elastostatic analyses of the three-point bend specimen were

performed. Based on the results of these, the mesh discretization shown in Figure 1

consisting of 396 isoparametric linear quadrilateral elements (425 nodes) was found

to be adequate. This mesh has a focussed region around the crack-tip of about

one (actual) specimen thickness which is divided into 18 sectors and 10 concentric

rings of elements. The crack-tip elements are four-noded quadrilaterals collapsed

into triangles. The mesh discretization was found to adequately capture the square-

root singular field near the crack-tip for the elastostatic case and was thus deemed

suitable for the dynamic problem as well.

For the two-dimensional elastodynanic simulations, the loads as obtained from

the experimental tup records (Figure 2) were applied as the boundary conditions.

That is, the impact-tup load history was applied to the node corresponding to

the impact-tup and the support-tup load history was applied to the associated

node as shown in Figure 1. From symmetry conditions, the uncracked ligament

was constrained to move only along the xl-direction. The rest of the boundary

was left free of traction. An implicit Newmark predictor-corrector time integration

scheme (see Hughes and Belytschko (1983)) was used for its virtue of unconditional

stability which would allow for relatively large time steps and the attendant loss of

high frequency information was deemed acceptable since it is not the intent here to

monitor discrete stress waves in the body. The time steps chosen for the numerical

integration were thus based only on accuracy considerations.

The (virtual) energy-release rate for a dynamically-loaded stationary crack is

given by (see Nakamura, Shih and Freund; 1986)

J= lim (U+T)ni - 9nj_.-) dr (3)

where U is the strain-energy density, T is the kinetic energy density, a~i is the

stress-tensor, u is the displacement vector, and n is the unit outward normal to the

contour of integration I". Here, I" -- 0 symbolically indicates that the integration

contour must be shrunk on to the crack-tip. In the simulations, the time history of
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this integral was computed using the equivalent domain integral form described in

Nakamura, Shih and Freund (1986). The dynamic stress-intensity factor was then

computed through the relation between KId and J in plane-stress,

K d = V/--, (4)

where E is the Young's modulus of the material. Figures 3a,b show the experimen-

tally obtained dynamic stress-intensity factor history in comparison with that from

the numerical simulations for specimens (v3s) and (a - 4). Here K 1 and KId refer

to the experimentally measured values corresponding to the two object plane dis-

tances z01 and z 02 (see part I for details) and K, is that computed from the dynamic

simulations (through the J-integral). It is seen that in both cases Kj has the same

general trend as KI1 and KI2 except that the experimental values are sometimes

substantially lower, while at other times equal to or higher than the simulated val-

ues. This discrepancy is attributable to two sources. First, there are uncertainties

associated with the simulations in terms of how accurately the tup records provide

the boundary tractions actually experienced by the specimens. Secondly, and more

importantly, there is the possibility that the experimental values might not have

been obtained from a region of Kd-dorninance. This is in fact foreshadowed by the

discrepancy between the two experimental records themselves.

In the above, it has been implicitly assumed that the asymptotic Kd-field has

validity for this (two-dimensional) geometry and dynamic loading condition. How-

ever, as pointed out in part I, the existence of a stress-intensity factor field around

a dynamically-loaded stationary crack in a finite geometry has not been universally

established. It is thus necessary to check whether a square-root singular asymptotic

field is appropriate here. To this end, a logarithmic plot of stress component "2 2

along the 0 = 50 line versus the logarithm of radial distance from the crack-tip is

shown in Figure 4 for two representative times in the simulation. Comparison with

the corresponding curves for the asymptotic field (with the values of the stress-

intensity factor obtained from the J-integral) indicates that a square-root singular

field is indeed asymptotically descriptive of the near-tip continuum structure for

this two-dimensional configuration at least for the times shown.
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As a measure of the extent of dominance of the asymptotic Kd-field, the an-

gular variation of the stresses and displacements for a range of radial distance is

shown in Figures 5a,b, for one particular time. Also shown for comparison are the

corresponding asymptotic values. Note that the normalization used here is such

that the asymptotic values are given by a single curve for any radial distance. This

normalization enables distinct features of the stress-intensity factor field to be dis-

cerned in the near-tip full-field solution. The magnitudes, however, are seen to vary

with increasing radial distalce from the crack-tip.

A quantity of fundamental interest for the method of caustics in reflection is

the out-of-plane displacement field, u 3. The plane-stress condition that 033 = 0

provides the following relation for the out-of-plane displacement field:

vh
U3 = + 2 2),

where h is the actual specimen thickness. The angular variation of this is shown in

Figure 6 for two radial distances from the crack-tip. Again, U3 is normalized by the

corresponding asymptotic quantity. It can be seen that the full-field quantity is in

reasonable qualitative agreement with the asymptotic expression for r/h --+ 0 with

increasing deviation in magnitude as r/h increases. This was seen to be the case

for other times in the simulation as well. Note, again, that normalization of two

dimensional results with respect to the (actual) specimen thickness is done purely

for comparison purposes with subsequent three dimensicnal results.

Finally, synthetic caustics were obtained from the out-of-plane displacement

field for various times in the simulation. Since linear finite-elements were used and,

in plane-stress problems, the out-of-plane displacement fi d is obtained from the

in-plane stress field, a smoothing scheme given in Hinton and Campbell (1974) was

used as described by Narasimhan and Rosakis (1988b) to obtain the derivatives of

the surface-displacement field required in the caustic-mapping of the surface. A

representative set of these caustic patterns is shown in Figure 7a for one particular

time in the simulation and for a set of zos. The corresponding initial-curve radii

computed on the basis of the caustic diameters (see part I for details) range from

ro/h of 0.31 to 0.86. These caustics are seen to have the epicycloidal shape charac-

teristic of those from the asymptotic solution. The ratio of the stress-intensity factor
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computed from the diameters of these synthetic caustics (denoted Kas) to that

obtained from the J-integral (Kj) are plotted in Figure 7b as a function of the initial-

curve radius of the numerical caustic. While the apparent measured stress-intensity

factor seems to increase as ro/h increases, to within the accuracy warranted by the

procedure used here, it appears that caustics should provide the stress-intensity

factor value (to within 20%) for initial-curve radii in the range ro/h < 0.8. Even

though this error is definitely substantial, it is clear that two-dimensional transient

effects alone would not seem to entirely account for the much larger variation in the

stress-intensity factor observed in the experiments. Indeed, it is worth noting that

the above result would indicate that caustics should always overestimate Kj which

is not necessarily the case in the experiments (see Figures 3a,b).

3 THREE-DIMENSIONAL ELASTODYNAMIC SIMULATION

It appears that the substantial variation observed between the experimentally

measured stress-intensity factors from bifocal caustics (see part I) cannot be ex-

plained purely in terms of (two-dimensional) dynamic effects affecting the caustic

patterns. Thus additional reasons must be sought in terms of a) non-linear effects

or b) three-dimensional effects under transient conditions. Visual evidence of the

plastic deformation in the fractured specimens indicated that the initial-curves for

the experimental caustics were well outside the plastic zone whose maximum ex-

tent was seen to be confined to rp/h < 0.15. Based on the estimates of Rosakis

and Freund (1981), the experimental results of Zehnder and Rosakis (1988), as well

as elastoplastic simulations of the current experiments (reported in Krishnaswamy

and Rosakis (1989)), plasticity effects are expected to be negligible. Thus attention

will now be directed toward studying the effect of three-dimensionality near the

crack-tip by means of a full-field three-dimensional elastodynamic simulation of the

drop-weight experiments.

The mesh geometry used had an in-plane layout identical to that used for

the two-dimensional cases (Figure 1). This enables direct comparison of three-

dimensional results with the corresponding plane-stress simulations and thereby

helps identify the effect of three-dimensionality. Five layers of 8-noded brick ele-

ments through half the thickness leading to a total of 1960 elements (2550 nodes)
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were used to model one-quarter of the three-dimensional body. The crack-tip el-

ements were collapsed to form triangular wedges. Recognizing that the largest

through-thickness variations in field quantities occur near the free-surface, the

mesh was graded in the thickness direction such that the layer interfaces were at

x 3 /h = 0, 0.15, 0.275, 0.375, 0.45 and 0.5. The experimentally obtained tup load

histories interpreted as uniform line loads through the thickness were applied as

boundary conditions to the appropriate nodes. The uncracked ligament surface and

the specimen mid-plane were constrained suitably as dictated by symmetry consid-

erations. The rest of the boundary was left traction-free. Once again, an implicit

Newmark predictor-corrector scheme was used in order to be consistent with the

algorithm used for the two-dimensional simulation.

Following Nakamura, Shih and Freund (1986), an average dynamic energy-

release rate integral appropriate for the three dimensional case can be defined as:

J., - i (U + T)n, - -iij cx--- ds, (6)
V -0i ( au, )

where S is now a tubular surface through the specimen and S -- 0 symbolically

indicates that this surface is shrunk onto the crack-front. In order to compare

with experimental results, an 'average' stress-intensity factor is extracted from Ja
through relation (4). The average energy-release rate value obtained from the three-

dimensional simulation is shown in Figure 8 and is seen to be not much different from

that computed in the plane-stress analysis. This is an indication that the plane-

stress approximation might be adequate if one is merely interested in integrated

energy-release rate type of quantities.

From the point of view of the method of caustics in reflectlin, the primary is-

sue is the extent of deviation of the near-tip surface out-of-plane displacement field

from the corresponding asymptotic plane-stress expression. This is shown in Figure

9a for a set of radial lines along 6 = 00, 600 and 140' and for one typical time.

The surface u3-displacements as obtained from the three-dimensional solution are

normalized by the corresponding asymptotic values. The two-dimensional counter-

part along the radial line 6 = 0' is shown for comparison purposes. Two salient

features can be identified from this figure. First, the two-dimensional full-field val-

ues seem to be in good agreement with the asymptotic for sufficiently small radial
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distances. The asymptotic expression becomes increasingly inaccurate for larger ra-

dial distances. Secondly, it is precisely in those regions where the two-dimensional

and asymptotic fields are in close agreement that the three-dimensional structure

deviates the most from the asymptotic. In Figure 9b, the angular variations of the

surface u 3-displacements are shown for a range of r/h. Under the normalization

used, the asymptotic u3 -displacements are given by cos(0/2) - the solid line - for any

radius. Again it is noted that the asymptotic field does not always model the actual

three-dimensional structure very well. Indeed, the deviation from the asymptotic is

seen to be pronounced toward the crack- tip. For larger r/h, the theta variation of

u3 seems to approach the asymptotic curve in form though not in actual magnitude.

Further, Figure 9c clearly brings out the deviation of the actual three-dimensional

field from the corresponding asymptotic values. Here contours of constant free-

surface u3 displacements from the three-dimensional analysis are shown in the top

half of the figure. The bottom half shows the corresponding contours if the asymp-

totic Kd-field had prevailed. It appears that the actual three-dimensional field is not

quite captured by the asymptotic expression for the surface out-of plane displace-

ments - toward the crack-tip because of substantial three-dimensional effects and

away from it because the asymptotic expression becomes increasingly insufficient.

The qualitative effects of the above features insofar as these affect the method

of caustics can now be evaluated. As described previously, the three-dimensional

surface out-of-plane displacements obtained numerically for various times in the sim-

ulation are mapped using (1) to obtain synthetic caustic patterns. A representative

sequence of these caustic patterns for one particular time is shown in Figure 10a.

These were obtained for the same instant of simulation and for the same set of z0 s

as were used in the two-dimensional case. The role of three-dimensionality is thus

clearly brought out. The graphic contrast that emerges between the caustic pat-

terns obtained under two-dimensional assumptions and the actual three-dimensional

conditions can be seen by comparing Figures 7a and 10a. In comparison to the cor-

responding two-dimensional results, it is noted that for small r/h, the shadow spots

in Figure 10a are less epicycloidal in shape and much smaller in size. This is not

surprising considering the angular variations of u 3 which deviated markedly from
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the asymptotic value as r --+ 0. Compare this with the results of the plane-stress

analysis (see Figure 7a) where the qualitative agreement with the asymptotic field

appears to be much better over a wider range of r/h. If, now, one were to relate the

caustic diameters to the stress-intensity factor through (2), then the resulting value

of KCGU/Kj (shown for two times) is seen to vary quite substantially with increas-

ing initial-curve radius as shown in Figure 10b. From the figure, it is seen that as

r0 /h -+ 0 the measured stress-intensity factor value becomes substantially less than

the value obtained from the domain integral. Further, for larger initial-curve radii,

it is possible for caustics to provide an overestimate of Kj. More importantly, the

almost monotonically increasing KCGUS/Kj vs r0 /h curve for the three-dimensional

transient simulation case qualitatively captures essentially all the features observed

experimentally. Thus, the apparent dynamic stress-intensity factor as measured by

the method of caustics would seem to increase with increasing initial-curve radii.

Also, in view of the lack of a sizeable domain of dominance of K d, it would appear

that the agreement between the measured dynamic stress-intensity factor history

and that computed through the J-integral cannot be expected to be any better than

obtained in Figures 3a,b.

As a parenthetical note, it is interesting that the variation in Kdl and K12 - the

two values for the dynamic stress-intensity factor as measured from pairs of bifocal

caustics - turns out to be in quite good quantitative agreement with the results of

Figure 10b. That is, the ratio of K i to K12 as obtained from experiments seem

to be in close agreement with that obtained from Figure 10b for the corresponding

initial-curve radii. This can be seen in Figure 11 where the numerically generated

results of Figure 10b are used to "scale" the results of one particular experiment.

To do this, assume that the results of Figure 10b (Kca/,,/Kj vs ro/h) hold for the

whole duration of the loading. The experimental data (corresponding to the two

zos) shown in Figure 11a can then be scaled, for each time, to the corresponding

'K)' value by means of Figure 10b. The resulting "scaled" dynamic stress-intensity

factor histories corresponding to the two z0 s are shown in Figure 11b. It is seen that

by this procedure the deviation between the K, values observed in the experiments

from pairs of bifocal caustics essentially reduce to within expected experimental
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scatter for the whole duration of loading. Thus it would appear that the main

reasons for the observed experimental variation are accounted for by the three-

dimensional elastodynamic simulation. Note that it is purely to highlight this point

that the above "scaling" procedure was adopted. It is not the intention here to offer

Figure 10b as some kind of an empirical "correction curve" for experime"tal data.

Finally, it is instructive to look into some additional features of the near-tip

field quantities. Figures 12,13 show the radial variation along the 9 = 45' line

of the three-dimensional stresses and displacements for different planes along the

thickness direction. This is done for one representative time. Note that in all

these plots, the three-dimensional quantities are normalized by the corresponding

quantities from the full-field dynamic plane-stress analysis. This is done in an

attempt to highlight the effects of three-dimensionality by minimizing variations

due to dynamic effects. One point to note is that the three-dimensional results seem

to show maximum deviation from the two-dimensional results as the free-surface is

approached. Further, the plane-stress solution seems to be recovered within about

one-plate thickness from the crack-front. It is interesting that the deviation in the

in-plane displacements ul are much less pronounced than in the other quantities.

Figure 14 is a plot of the so-called plane-strain constraint which should be unity

in regions where plane-strain conditions are obtained and zero where plane-stress

conditions prevail. This is shown for one typical time in the simulation. It is

seen that, by this measure, plane-stress conditions are obtained at radial distances

greater than about one-half plate thickness.

The thickness variations of the plane-strain constraint and also representative

stress components (all and a22 normalized by the corresponding full field two di-

mensional values) are shown in Figulres 15a,b,c for a range of radial distance from

the crack-tip along the 9 = 45' line. Once again it can be seen that the deviation in

stresses from the t- o-dimengional fields is largest toward the free-surface. Also, all

these plots underscore the point that the assumption of plane-stress is indeed a good

one (even for stress quantities) only for regions of radial extent greater than about

one plate thickness away from the crack-front. This might conceivably be of interest

to the experimentalist who uses the techniques of photoelasticity or transmission
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caustics.

4 DISCUSSION

Based on two- and three-dimensional elastodynamic simulations of the drop-

weight tests, the following conclusions can be drawn:

i. The dynamic asymptotic field, while sufficiently accurate for r --+ 0, becomes

increasingly inadequate for larger radial distances even in a purely two dimen-

sional setting.

ii. The three-dimensional nature of the dynamic crack-tip field, which is seen to

be confined to within at most one-plate thickness radial extent around the

crack-tip, exhibits largest deviation from the full-field plane-stress results for

r/h --+ 0.

iii. The above two results together imply that the three-dimensional structure of

the nea-tip surface, coupled with the transient nature of the local fields, appear

to preclude any sizeable region of KI-dominance around the crack-tip.

The experiments reported in part I had also indicated the lack of an underlying K-

dominant field. This was observed experimentally for both the dynamically loaded

stationary crack as well as for rapidly propagating cracks. While it is recognized

that the results of this work are specific to the configuration studied, it is not

inconceivable, especially in view of lack of countervailing evidence, that a similar

result could hold in other settings. It might thus be instructive to speculate on the

validity of the presumed Kd-dominance in some of the experiments reported in the

literature.

Some implications of lack of Kd-dominance:

As far as Lhe dominance of a KI-field is concerned, the ratio of the smallest

pertinent in-plane length to the specimen thickness can be thought of as a relevant

geometry parameter. As pointed out in part I, the possible extent of a KI-dominant

annulus around the crack-tip is bounded from within by the maximum extent of a)

the process zone, b) the non-linear region and c) the three-dimensional region. For

nominally brittle materials such as those considered in this work, it appears that

three-dimensionality is the most critical of the three. Also, the outer bound for a K1 -

dominant annulus around the crack-tip is expected to depend on a relevant in-plane
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length scale. Thus, under static conditions at least, it is expected that the ratio a/h

(where 'a' is the smallest relevant in-plane length and 'h' is the specimen thickness)

must be sufficiently large for a Kl-field to survive the three-dimensional region and

establish its dominance over some finite domain. In dynamic problems, the issue

is much more involved with additional requirements dictated by the nature of the

loading and the time required for stress-wave information to reach regions outside

the three-dimensional zone (see, for example, Ravi-Chandar and Knauss (1987)).

Thesc, however, would seem to only further restrict the possibility of obtaining a K d -

dominant region in a real experiment. Thus, if a/h fails to be sufficiently large, it is

not expected that a KI-dominant field would prevail over any finite domain around

the crack-tip. In particular, note that in the experiments reported in this work, a/h

is about 9 (based on the uncracked ligament as the relevant in-plane length) and, for

this value, a K/-dominant field was not observed. It might thus be expected that

the existence of a Ka-dominant region is not assured for specimens for which a/h

is of the same order as in this work. It is not the authors' intention here to make a

detailed review of the experimental literature with a view to ascertaining whether

KjA-dominance prevailed in these experiments or not. Rather, the parameter a/h

is suggested here as one measure by which the interested reader might gauge the

relevance of the results of this work to other experiments. In the following, some

issues on which the results of this work might have a bearing are briefly discussed.

On KID - it relations: The question of the precise functional dependence of the

dynamic fracture toughness on the crack velocity has appropriated a substantial

share of the resources devoted to the study of dynamic fracture. The argument, for

the most part, has centered around the issue of uniqueness of relationship between

KI and t. Kobayashi and Dally (1980), Rosakis, Duffy and Freund (1984), Zehnder

and Rosakis (1989) among others, provide data sets that seem to indicate that the

KID - ii relation is indeed (to within experimental error) a unique material property.

The results of Kobayashi and Mall (1978) and Ravi-Chandar and Knauss (1984)

- using photo-elasticity and the method of caustics in transmission respectively

- suggest, however, that there is no such one-to-one correspondence. There is

substantial scatter in many of these data sets (see Figures 16a,b). Is this scatter
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due to a lack of a unique correspondence between KID and i, or due to a more

fundamental lack of a KID-dominant field in the experiments? Also, in all these

experiments, the question of whether it is indeed the dynamic stress-intensity factor

that is being measured needs to be looked into.

On impact-response curves: In order to easily obtain dynamic initiation fracture

toughness values using impact loading of a three-point bend specimen, Kalthoff

(1985) has suggested the concept of impact-response curves. This is essentially

a calibration curve based on the assumption that the stress-intensity factor value

obtained through the method of caustics gives the 'true' value. A preliminary

experiment using the method of caustics is conducted to obtain the time history

of stress-intensity factor which is then used as a master curve for all other tests

involving similar geometry. That is, in subsequent tests, only the time to fracture

(from the time of impact) is monitored and the dynamic initiation toughness is

simply read off the master curve. The question that arises from this work is one

of reliability of the master curve. In particular, by how much would the impact-

response curve change if, in the caustics experiment used to obtain it, a different

choice of zo (leading to a different range of r0/h) had been used?

On specimen dependence of KID: By far the most troubling of all the experimen-

tal results are those that indicate that the dynamic fracture toughness could be

specimen dependent (Kalthoff (1983) and Dahlberg, Nilsson and Brickstad (1985)).

These results (Fig 18), rather than merely contending about the parametric de-

pendence of a material property - the fracture toughness - would, if true, seem

to indicate that the stress-intensity factor based fracture criterion is fundamen-

tally flawed. However, it is possible to attribute the apparent observed specimen

dependence of KID to specimen-dependent differences in the near-tip field (i.e.,

the near-tip fields, not being K/d-dominant, might have a different structure from

specimen to specimen). Moreover, as has been shown in this work, much larger

differences (than the 20% or so that is seen in the results of Kalthoff (1983)) could

possibly have been obtained for the same type of specimen if, in the caustics ex-

periments used to obtain these results, a different range of initial-curves had been

used by changing the specimen to image plane distance z0 .
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On KID - ai relations: Attempts by Takahashi and Arakawa (1987) - using the

method of caustics again - to show acceleration dependence of the dynamic fracture

toughness can also be deemed inconclusive for precisely the same reasons as above.

On Photo-elasticity vs Caustics: Nigam and Shukla (1988) have recently tried to

compare the methods of photoelasticity and transmission caustics by doing tests

on identical specimens under identical loading. They show that while both meth-

ods work well for static problems, the method of photo-elasticity gives values for

the dynamic stress-intensity factor which are about 30-50% higher than those ob-

tained through the method of caustics (Figure 18). One point to note is that

photo-elasticity and caustics data typically come from different regions around the

crack-tip. While assuming that they obtain their dynamic caustic patterns from

a Ki-dominant area, in the interpretation of their photo-elastic fringes, they use

a two-dimensional "higher-order" expansion as suggested by Dally, Fourney and

Irwin (1985). As was shown in this paper, transient loading and three-dimensional

effects necessarily have to be taken into account in the near-tip region. Thus it is

not clear that a steady-state, higher-order, two-dimensional analysis would be an

improvement over the assumption of a KI-dominant field. It also remains to be

seen whether their caustics data were indeed obtained from a KI-dominant region.

5 CONCLUSION

In this paper as well as in part I, an attempt has been made to investigate

the consequences of interpreting experimental results using the method of reflected

caustics under the assumption of Kd-dominance. It was shown that this assump-

tion could lead to substantial errors in the measured results. It is our view that

many of the apparent discrepancies in the experimental literature might arise from

the lack of an underlying Kd-dominant or higher-order two-dimensional region as-

sumed in the interpretation of the experimental data. The assumption that the

near-tip region is Kd-dominant ( or even two-dimensional, for that matter ) is only

an approximation and, as such, entails a corresponding uncertainty in the mea-

sured values for the dynamic stress-intensity factor. We feel that it is essential to

undertake studies in the spirit of the one reported here to investigate the assump-

tions of other experimental techniques (photo-elasticity, transmission caustics, et
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cetera) and evaluate the costs incurred in terms of loss of accuracy. Investigations

designed to resolve questions of the dependence of the dynamic fracture toughness

on crack-velocity, acceleration or specimen geometry would be meaningful only if

the observed variations are significant in comparison to the uncertainty associated

with the assumptions of the experimental techniques used.
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Figure 11: (a) Raw and (b) "scaled" experimental data for specimen (3q).
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